

PowerShell APIs Samples V1.0 Page 1/18

PowerShell APIs Samples V1.0

PowerShell APIs Samples V1.0 Page 2/18

Table of Content
1. Getting Started ... 3

2. Configuration Settings .. 4

3. Samples ... 7

PowerShell APIs Samples V1.0 Page 3/18

1. Getting Started

The API gives you programmatic access to the Cloudiway service. Our API is based on REST
principles making it easy for you to develop and test applications.

We provide a full PowerShell library with all standard operations. You’ll have access to
samples for each product. The goal of this guide is to make it easier for you to start using our
APIs and have a better overview of the process. Please note that the complete APIs document
can be found on our site.

The provided zip file contains the followings:

Classes and Functions Folder: this folder contains all the classes and function definition

MainScript.ps1: this is the main script that you’ll be running and updating based on what you’re
trying to achieve.

You need to have a valid account on https://portal.cloudiway.com and create a project.

Please note that this guide intends to just provide you with samples that you can use and update
depending on your objectives. You can find the Swagger definition of our public APIs
here: https://api-production.cloudiway.com/index.html

https://portal.cloudiway.com/
https://api-production.cloudiway.com/index.html

PowerShell APIs Samples V1.0 Page 4/18

2. Configuration Settings

The first step to get you started is to authenticate using you credentials and retrieve the Bearen
Token. You’ll need to enter your Cloudiway credentials

 ####### GET CONFIG SETTINGS #######
 $global:HOSTURL = 'https://api-production.cloudiway.com'
 $userId = 'Name@cloudiway.com' #Your Login
 $userPass = 'YourPassword' #Your Password

 # Login
 $global:BEARERTOKEN = Get-BearerToken $userId $userPass

The Get-BeareToken function will retrieve and return the token that will be used later. This
function invokes the following API:

Once you have a valid account on the platform, you’ll be able to create a project. Each
project has its unique ID which we’ll be using to invoke any of the sample APIs. In the main
script we provide a function called GetProjects. It will invoke this API using the bearer
token:

This will return the list of projects that you have access to with their corresponding IDs
which will be used later. Example of running “GetProjects”:

PowerShell APIs Samples V1.0 Page 5/18

Once you identify the ID of the project you want to work on, you’ll need to store it in the
global variable PROJID:

 #Identify the project you want to work on and insert the projectId here
 $global:PROJID = 713

The project ID is required to invoke any APIs within the project. Depending on your level of
permission the API will return an error if you don’t have enough privileges. Example: You’re
a viewer on the project Google Groups (ID 354) and you’re trying to delete a connector or a
user. The API will return a 403 Forbidden. It also applies when you’re trying to invoke an
API within a project you don’t have permissions on.

Once your project is created, you’ll need to set-up your connectors. We do not recommend
creating the connectors with the APIs. One thing about creating connectors with the API is
that there are many validity checks that occur on the front-end only – not in the API, so it’s
possible that you could create some invalid connectors.

You’ll need to identify your source and target pool IDs to perform any future migration tasks.
This API returns the list of available connectors within your specific project:

PowerShell APIs Samples V1.0 Page 6/18

It can be invoked using the function “GetConnectors” as below:

It returns the list of connectors with their respective IDs and Pool IDs.

From there you can identify your source and target pool IDs and get started with your
migration. You’ll need to store the pool IDs in the global variables “Spool” and “TPool”:

 #Identify your Pools IDs
 $global:SPool = 3
 $global:TPool = 4

PowerShell APIs Samples V1.0 Page 7/18

3. Samples

The following section covers the provided API samples for the product File. The same
methodology can be followed for the other products.

3.I. Get User List

To get the list of users within your project you can invoke the following APIs:

Or

We chose to provide a sample for displaying the File_List using the
Post/ap1/File/Displayable since it is more generic and provide more information in the
response(batch, status…). You can invoke this API when running the function
“GetFileUserList”:

The ID of the user is a unique identifier and is used to invoke many APIs. It is also referred to
as the “ObjectID”.

Example of an API where the ObjectID is required and passed in the payload:

PowerShell APIs Samples V1.0 Page 8/18

3.II. Create a File User

The “CreateFileUser” function is a sample for creating a File user where the source is a
Google Drive and the target is a OneDrive. It invokes the following API:

The parameters are the followings:

Parameters:

$FName String First name of the user to be
created

$LName String Last name of the user to be
created

$SEmail String Source email of the Google
Drive/ OneDrive

$TEmail String Source email of the Google
Drive/ OneDrive

$Spool Integer Id of the source Pool that you
want to assign to your user

$TPool Integer Id of the target Pool that you
want to assign to your user

$TRecipient Integer 1 (OneDrive), 2(SharePoint)

Example of running “CreateFileUser”:

PowerShell APIs Samples V1.0 Page 9/18

3.III. Update File User

The “UpdateFileUser” function is a sample for updating an existing user within your project. It
invokes the following API:

The parameters are the followings:

Parameters:

$ID Integer Id of the user to update
$FName String First name of the user to be

created
$LName String Last name of the user to be

created
$SEmail String Source email of the Google

Drive/ OneDrive
$TEmail String Source email of the Google

Drive/ OneDrive
$Spool Integer Id of the source Pool that you

want to assign to your user
$TPool Integer Id of the target Pool that you

want to assign to your user
$TRecipient Integer 1 (OneDrive), 2(SharePoint)

Example of running “UpdateFileUser”:

PowerShell APIs Samples V1.0 Page 10/18

3.IV. Delete File User

The “DeleteFileUser” function is a sample for deleting an existing user within your project. It
invokes the following API:

The parameters are the followings:

Parameters:

$ID Integer Id of the user to update

Example of running “DeleteFileUser”:

PowerShell APIs Samples V1.0 Page 11/18

3.V. Get File User

The “GetFileUserBySourceEmail” function is a sample That can be user to get the ID of a user
within your project. It invokes the following API:

The parameters are the followings:

Parameters:

$SEmail String Source email of the Google
Drive/ OneDrive

Example of running “GetFileUserBySourceEmail”:

PowerShell APIs Samples V1.0 Page 12/18

3.VI. Get File User Logs

The “GetFileUserLogs” function is a sample to display the logs for a specific user. It invokes the
following API:

The parameters are the followings:

Parameters:

$ID Integer Id of the user

Example of running “GetFileUserLogs”

PowerShell APIs Samples V1.0 Page 13/18

3.VII. Get File User Stats

The “GetFileUserStats” function is a sample to display the statistics for a specific user. It invokes
the following API:

The parameters are the followings:

Parameters:

$ID Integer Id of the user

Example of running “GetFileUserStats”

PowerShell APIs Samples V1.0 Page 14/18

3.VIII. Start File Jobs

The “StartFileJobs” function is a sample to start jobs for a list of users. It invokes the following
API:

The parameters are the followings:

Parameters:

$JobType Integer Job to start: 24 (Audit), 26
(PreProcessing), 27 (Migration)

$objectsId Array of Integer ObjectIDs to invoke the API for.
To be passed in the Body

Example of running “StartFileJobs”

In this example we started an Audit for the user with the ID 10.

PowerShell APIs Samples V1.0 Page 15/18

3.IX. Stop File Jobs

The “StopFileJobs” function is a sample to stop jobs for a list of users. It invokes the following
API:

The parameters are the followings:

Parameters:

$objectsId Array of Integer ObjectIDs to invoke the API for.
To be passed in the Body

Example of running “StopFileJobs”

PowerShell APIs Samples V1.0 Page 16/18

3.X. Get Batches

The “GetListFileBatches” function is a sample to get the list of batches within your project.. It
invokes the following API:

PowerShell APIs Samples V1.0 Page 17/18

3.XI. Start Batch Jobs

The “StartFileBatchJobs” function is a sample to start jobs for a specific batch. It invokes the
following API:

The parameters are the followings:

Parameters:

$JobType Integer Job to start: 24 (Audit), 26
(PreProcessing), 27 (Migration)

$BatchId Integer Id of the batch to start the jobs
for

Example of running “StartFileBatchJobs”

In this example we started an Audit for the user with the ID 1.

PowerShell APIs Samples V1.0 Page 18/18

3.XII. Stop Batch Jobs

The “StopFileBatchJobs” function is a sample to stop jobs for a specific batch. It invokes the
following API:

The parameters are the followings:

Parameters:

$BatchId Integer Id of the batch to start the jobs
for

Example of running “StopFileBatchJobs”:

	1. Getting Started
	2. Configuration Settings
	3. Samples

